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Problem and Contribution

Problem: 1. Euclidean distance (ie, L2

distance) suffers from the curse of di-
mensionality. 2. Single metric takes ef-
fect only against particular attacks with
detailed assumptions regarding the ma-
licious gradients. X

Y
Gradient Feature:

Contributions:
• We present a novel defense with multi-metrics to adaptively identify back-

doors, which is applicable in a generic adversary model without predefined
assumptions over the attack strategy or data distribution.

• We show that by introducing the Manhattan distance, our defense alleviates
the “meaningfulness” problem of Euclidean distance in high dimensions.

• By utilizing multiple metrics with dynamic weighting, our defense can resist
backdoor attacks under various attack settings and data distributions.

The Proposed Method
Method Framework:
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The Superiority of Manhattan Distance:
• Manhattan can discriminate more than the Euclidean distance in high-dimension space.

Theorem:
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Dynamic Weighting:
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Experiments & Results
Robustness against Different Attacks and Comparison with SOTA

Impact of Different Degrees of Non-IID
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(b) EMNIST

Impact of Attacker Percentage
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(a) CIFAR10
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(b) EMNIST

Impact of Attack Frequency
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(b) EMNIST

Training process under Edge-case PGD attack
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(b) EMNIST

Ablation Study on Metrics
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Ablation Study on Dynamic Weighting Generalization to Different Datasets

Conclusion
• By leveraging multiple metrics with dynamic weighting, the proposed multi-metrics defense withstand a wide range

of stealthy and elaborate attacks in FL;
• The proposed method achieves state-of-the-art performance, especially against the Edge-case PGD attack.


