

Problem and Contribution

Problem: 1. Euclidean distance (ie, L_2) distance) suffers from the curse of dimensionality. 2. Single metric takes effect only against particular attacks with detailed assumptions regarding the malicious gradients.

Contributions:

- We present a novel defense with multi-metrics to adaptively identify backdoors, which is applicable in a generic adversary model without predefined assumptions over the attack strategy or data distribution.
- We show that by introducing the Manhattan distance, our defense alleviates the "meaningfulness" problem of Euclidean distance in high dimensions.
- By utilizing multiple metrics with dynamic weighting, our defense can resist backdoor attacks under various attack settings and data distributions.

The Proposed Method

Method Framework:

1 Define the features of gradients

2 Compute the weight and score the gradients 3 Aggregate the optimal gradients

The Superiority of Manhattan Distance:

• Manhattan can discriminate more than the Euclidean distance in high-dimension space.

Theorem:

If
$$\lim_{d \to \infty} var\left(\frac{\|X_d\|_k}{E\left[\|X_d\|_k\right]}\right) = 0$$
, then $\lim_{d \to \infty} E\left[\frac{Dmax_d^k - Dmin_d^k}{d^{(1/k) - (1/2)}}\right] = C_k$,
Proposition:

$$\frac{Dmax_d^k - Dmin_d^k}{D\min_d^k} \to_p 0,$$

Dynamic Weighting:

$$\delta^{(i)} = \sqrt{\boldsymbol{x'}^{(i)\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x'}^{(i)}}.$$

$$\lim_{\to\infty} E \left[\right]$$

Lemma:

 $\lim_{d \to a}$

Multi-metrics adaptively identifies backdoors in Federated learning Siquan Huang¹ Yijiang Li² Chong Chen¹ Leyu Shi¹ Ying Gao¹ ¹South China University of Technology ²Johns Hopkins University

$$\mathop{\mathrm{n}}_{\infty} E\left[\frac{M_d}{U_d \cdot d^{\frac{1}{2}}}\right] = C'.$$

Experiments & Results

Robustness against Different Attacks and Comparison with SOTA

Detect	Defense	Model Replacement [4]		DBA [48]		PGD [45]		Edge-case PGD [45]			
Dataset	Derense	MA ↑	$BA\downarrow$	MA ↑	BA↓	MA ↑	BA↓	MA ↑	BA↓	Ranking Score T	
CIFAR10	FedAvg [32]	86.95	64.80	79.23	90.44	87.04	14.44	87.14	55.10	0	
	RFA [38]	86.69(+0.00)	25.56(-0.61)	79.6(+0.00)	57.69(-0.36)	87.1 (+0.00)	52.56(+2.64)	86.47(-0.01)	65.31(+0.19)	-1.86	
	Foolsgold [16]	85.71(-0.01)	6.67(-0.90)	77.56(-0.02)	3.43(-0.96)	84.92(-0.02)	14.44(+0.00)	85.72(-0.02)	45.41(-0.18)	+1.96	
	Krum [8]	82.17(-0.05)	6.11(-0.91)	78.18(-0.01)	6.01(-0.93)	82.32(-0.05)	66.67(+3.62)	81.23(-0.07)	59.18(+0.07)	-2.04	
	Multi-Krum [8]	86.55(+0.00)	1.67(-0.97)	79.33(0.00)	91.39(+0.01)	86.52(-0.01)	17.78(+0.23)	87.4 (+0.00)	60.2(+0.09)	+0.63	
	Weak-DP [44]	74.41(-0.14)	46.11(-0.29)	10.00(-0.87)	0.00 (-1.00)	73.61(-0.15)	12.78(-0.11)	73.84(-0.15)	53.06(-0.04)	+0.12	
	Flame [35]	80.58(-0.07)	0.56 (-0.99)	76.78(-0.03)	37.24(-0.59)	81.24(-0.07)	0.56 (-0.96)	81.41(-0.07)	5.12(-0.91)	+3.21	
	Ours	86.34(-0.01)	0.56 (-0.99)	79.61 (+0.00)	9.98(-0.89)	86.44(-0.01)	0.56(-0.96)	86.86(+0.00)	3.06 (-0.94)	+3.77	
EMNIST	FedAvg [32]	99.54	96.00	97.68	94.13	99.55	10.00	99.37	96.00	0	
	RFA [38]	99.57(+0.00)	6.00(-0.94)	97.87 (+0.00)	1.39(-0.99)	99.32(+0.00)	4.00(-0.60)	99.29(+0.00)	97.00(+0.01)	+2.51	
	Foolsgold [16]	96.42(-0.03)	98.00(+0.02)	97.24(+0.00)	0.64(-0.99)	99.07(+0.00)	94.00(+8.40)	99.13(+0.00)	98.00(+0.02)	-7.49	
	Krum [8]	99.22(+0.00)	0.00 (-1.00)	97.7(+0.00)	0.56(-0.99)	99.12(+0.00)	1.00(-0.90)	99.14(+0.00)	12.00(-0.88)	+3.76	
	Multi-Krum [8]	99.58 (+0.00)	0.00 (-1.00)	97.85(+0.00)	47.43(-0.50)	99.54(+0.00)	0.00(-1.00)	99.57(+0.00)	84.00(-0.13)	+2.63	
	Weak-DP [44]	99.37(+0.00)	86.00(-0.10)	10.00(-0.90)	0.00 (-1.00)	99.41(+0.00)	14.00(+0.40)	99.39(+0.00)	89.00(-0.07)	-0.12	
	Flame [35]	99.39(+0.00)	0.00 (-1.00)	97.12(-0.01)	17.38(-0.82)	99.39(+0.00)	0.00 (-1.00)	99.44(+0.00)	13.00(-0.86)	+3.67	
	Ours	99.53(+0.00)	0.00 (-1.00)	97.39(+0.00)	4.23(-0.96)	99.54(+0.00)	0.00 (-1.00)	99.58 (+0.00)	0.00 (-1.00)	+3.95	

Impact of Different Degrees of Non-IID

Conclusion

- of stealthy and elaborate attacks in FL;

Impact of Attacker Percentage

Ablation Study on Metrics

Defenses	Model Replacement	PGD	Edge-case PGD		
	MA/BA	MA/BA	MA/BA		
Man	83.86/ 0.56	83.74/25.56	85.3/64.80		
Eul	86.24/ 0.56	85.52/17.78	87.12 /54.08		
Cos	84.22/2.22	83.84/30.00	85.38/66.84		
Man+Eul	84.09/1.11	84.17/28.63	84.3/67.35		
Man+Cosine	85.74/1.67	85.16/23.68	85.86/6.63		
Cosine+Eul	86.31/ 0.56	85.44/16.11	85.14/63.78		
Man+Cosine+Eul	86.34/0.56	86.44/0.56	86.86/ 3.06		

Weighting	Model Replacement		PGD		Edge-case PGD		Defense	CINIC10		LOAN		Sentiment140	
	$\overline{MA\uparrow}$	BA↓	MA↑	$\mathrm{BA}\downarrow$	MA ↑	$BA\downarrow$		$\mathrm{MA}\uparrow$	$BA\downarrow$	MA ↑	$BA\downarrow$	$\mathbf{MA}\uparrow$	BA↓
Max Norm Whitening	83.86 86.34	0.56 0.56	83.74 86.44	25.56 0.56	84.08 86.86	62.24 3.06	FedAvg Ours	80.02 76.24	36.22 4.59	89.05 88.52	61.36 0	82.59 81.67	89.17 5.83

• By leveraging multiple metrics with dynamic weighting, the proposed multi-metrics defense withstand a wide range

• The proposed method achieves state-of-the-art performance, especially against the Edge-case PGD attack.

PARIS

Email

Impact of Attack Frequency

